Цитоплазма клетки: ее значение в биологии. Строение клетки Зачем нужна цитоплазма

Что такое цитоплазма? Каково ее строение и состав? Какие функции она выполняет? В этой статье мы подробно ответим на все эти вопросы. Кроме того, мы рассмотрим структурные особенности цитоплазмы и ее свойства, а также поговорим о делении строении клеточных мембран и важнейших клеточных органоидах.

Структурные единицы всех тканей и органов клетки. Два типа их структурной организации

Известно, что клетки образуют ткани всех растений и животных. Эти структурные единицы всего живого могут различаться по форме, размерам и даже по внутреннему строению. Но в то же время они имеют схожие принципы в процессах жизнедеятельности, в том числе в обмене веществ, росте и развитии, раздражимости и изменчивости. Самые простейшие формы жизни состоят из единственной клетки и размножаются делением.
Учеными было выделено два типа организации клеточной структуры:

  • прокариотический;
  • эукариотический.

Они имеют множество различий в своем строении. В структурно оформленное ядро отсутствует. Ее единственная хромосома находится непосредственно в цитоплазме, то есть никак не отделяется от других элементов. Такое строение свойственно бактериям. Их цитоплазма бедна по составу структур, но в ней имеются мелкие рибосомы. Эукариотическая устроена гораздо сложнее прокариотической клетки. Ее ДНК, связанная с белком, находится в хромосомах, располагающихся в обособленном клеточном органоиде - ядре. Оно отделяется от других органоидов клетки пористой мембраной и состоит из таких элементов как: хроматин, ядерный сок и ядрышко. Тем не менее есть и нечто общее у двух типов клеточной организации. И прокариоты, и эукариоты имеют оболочку. А их внутреннее содержимое представлено особым коллоидным раствором, в котором находятся различные органоиды и временные включения.

цитоплазма. Ее состав и функции

Итак, переходим к сути нашего исследования. Что такое цитоплазма? Давайте рассмотрим более подробно это клеточное образование. Цитоплазма представляет собой архиважную составляющую клетки, располагающуюся между ядром и плазматической мембраной. Полужидкая, она пронизана канальцами, микротрубочками, микрофиламентами и филаментами. Также под цитоплазмой можно понимать коллоидный раствор, который характеризуется движением коллоидных частиц и прочих компонентов. В этой полужидкой среде, состоящей из воды, различных органических и неорганических соединений, располагаются клеточные структуры-органоиды, а также временные включения. Важнейшие функции цитоплазмы таковы. Она осуществляет оформление всех клеточных компонентов в единую систему. Благодаря наличию канальцев и микротрубочек цитоплазма выполняет функцию клеточного скелета и предоставляет среду для осуществления физиологических и биохимических процессов. Кроме этого, она дает возможность для функционирования всех клеточных органоидов и обеспечивает передвижение. Эти функции клетки цитоплазмы чрезвычайно важны, так как позволяют структурной единице всего живого осуществлять свою нормальную жизнедеятельность. Теперь вы знаете, что такое цитоплазма. А также осведомлены о том, какое положение в клетке она занимает и какую "работу" выполняет. Далее мы рассмотрим состав и структуру коллоидного раствора более подробно.

Есть ли отличия в цитоплазме растительной и животной клеток?

Мембранными органоидами, находящимися в коллоидном растворе, считаются эндоплазматическая сеть, митохондрии, лизосомы, пластиды и наружная цитоплазматическая мембрана. В клетках животных и растений состав полужидкой среды отличается. Цитоплазма в имеет специальные органоиды - пластиды. Они представляют собой специфичные белковые тельца, которые различаются по функциям, форме и окрашиваются пигментами в разные цвета. Пластиды располагаются в цитоплазме и способны передвигаться вместе с ней. Они растут, размножаются и вырабатывают органические соединения, содержащие ферменты. Цитоплазма в растительной клетке имеет три вида пластид. Желтоватые или оранжевые называются хромопластами, зеленые - хлоропластами, а бесцветные - лейкопластами. Есть и еще одна характерная особенность - комплекс Гольджи представлен диктиосомами, рассеянными по цитоплазме. В клетках животных, в отличие от растительных, имеется два слоя цитоплазмы. Наружный называется эктоплазма, а внутренний - эндоплазма. Первый слой прилегает к клеточной мембране, а второй - находится между ним и пористой ядерной мембраной. Эктоплазма имеет в своем составе большое количество микрофиламента - нитей из молекул глобулярного белка актина. Эндоплазма содержит различные органоиды, гранулы и характеризуется меньшей вязкостью.

Гиалоплазма в эукариотической клетке

Основу цитоплазмы эукариотов составляет так называемая гиалоплазма. Она представляет собой слизистый, бесцветный, неоднородный раствор, в котором постоянно протекают процессы обмена веществ. Гиалоплазма (иными словами матрикс) это со сложным строением. В ее состав включаются растворимые РНК и белки, липиды и полисахариды. Еще в гиалоплазме содержится значительное количество нуклеотидов, аминокислот, а также ионов неорганических соединений типа Na - или Са 2+ .

Матрикс не имеет гомогенной структуры. Он представлен в двух формах, которые называются гель (твердая) и золь (жидкая). Между ними происходят взаимопереходы. В жидкой фазе имеется система тончайших белковых нитей, которые называются микротрабекулами. Они связывают все структуры внутри клетки. А в местах их пересечения находятся группы рибосом. Микротрабекулы вместе с микротрубочками и микрофиламентами формируют цитоплазматический скелет. Он определяет и упорядочивает местоположение всех клеточных органелл.

Органические и неорганические вещества в коллоидном растворе клетки

Давайте рассмотрим, каков же химический состав цитоплазмы? Вещества, содержащиеся в клетке, можно классифицировать на две группы - органические и неорганические. Первая представлена белками, углеводами, жирами и нуклеиновыми кислотами. Углеводы в цитоплазме представлены моно-, ди- и полисахаридами. К моносахаридам, бесцветным кристаллическим веществам, обычно сладковатым на вкус, относят фруктозу, глюкозу, рибозу и т. д. Крупные молекулы полисахаридов состоят из моносахаридов. В клетке они представлены крахмалом, гликогеном и целлюлозой. Липиды, то есть молекулы жиров, образуются остатками глицерина и жирных кислот. Структура цитоплазмы: неорганические вещества представлены в первую очередь водой, которая, как правило, составляет до 90% массы. Она выполняет в цитоплазме важные функции.

Вода является универсальным растворителем, придает упругость, принимает непосредственное участие в перемещении веществ как внутри, так и между клетками. Что касается макроэлементов, формирующих основу биополимеров, то более 98% всего состава цитоплазмы занимают кислород, водород, углерод и азот. Кроме них в клетке содержатся натрий, кальций, сера, магний, хлор и др. Минеральные соли находятся в виде анионов и катионов, при этом их соотношение определяет кислотность среды.

Свойства коллоидного раствора в клетке

Рассмотрим далее, каковы основные свойства цитоплазмы. Во-первых, это постоянный циклоз. Он представляет собой внутриклеточное движение цитоплазмы. Впервые оно было зафиксировано и описано в 18-м столетии итальянским ученым Корти. Циклоз осуществляется во всей протоплазме, в том числе и в тяжах, связывающих цитоплазму с ядром. Если движение по каким-либо причинам прекращается - погибает эукариотическая клетка. Цитоплазма обязательно находится в постоянном циклозе, который обнаруживается по перемещению органоидов. Скорость движения матрикса зависит от различных факторов, в том числе от света и температуры. К примеру, в эпидермисе чешуи лука скорость циклоза составляет около 6 м/с. Движение цитоплазмы в растительном организме оказывает огромное влияние на его рост и развитие, способствуя транспорту веществ между клетками. Вторым важным свойством является вязкость коллоидного раствора. Она сильно варьируется в зависимости от вида организма. У некоторых живых существ вязкость цитоплазмы может совсем незначительно превышать у других, наоборот, достигать вязкости глицерина. Считается, что она зависит от обмена веществ. Чем интенсивнее происходит обмен, тем ниже становится вязкость коллоидного раствора.

Еще одним немаловажным свойством является полупроницаемость. Цитоплазма в своем составе имеет пограничные мембраны. Они, благодаря особому своему строению, имеют возможность избирательно пропускать молекулы одних веществ и не пропускать других. цитоплазмы играет важнейшую роль в процессе жизнедеятельности. Она не постоянна в течение жизни, меняется с возрастом и увеличивается у растительных организмов при повышении интенсивности освещения и температуры. Сложно переоценить значение цитоплазмы. Она участвует в энергетическом обмене, транспорте питательных веществ, выведении экзотоксинов. Также матрикс считается осмотическим барьером и участвует в регуляции процессов развития, роста и клеточного деления. В том числе цитоплазма играет большую роль при репликации ДНК.

Особенности клеточного размножения

Все растительные и животные клетки размножаются делением. Известно три вида - непрямое, прямое и редукционное. Первый иначе называется амитоз. Непрямое размножение происходит следующим образом. Первоначально «перешнуровывается» ядро, а затем происходит деление цитоплазмы. В итоге формируются две клетки, которые постепенно вырастают до размеров материнской. Такой вид деления у животных встречается крайне редко. Как правило, у них происходит непрямое деление, то есть митоз. Оно значительно сложнее амитоза и характеризуется тем, что происходит усиление синтеза в ядре и удвоение количества ДНК. Митоз имеет четыре фазы, которые называются - профаза, метафаза, анафаза и телофаза.

  • Первая фаза характеризуется формированием клубка хроматиновых нитей на месте ядра, а впоследствии хромосом в виде «шпилек». В этот период происходит расхождение центриолей к полюсам и формирование ахроматинового веретена деления.
  • Второй этап митоза отличается тем, что хромосомы, достигая максимальной спирализации, начинают располагаться на экваторе клетки упорядоченно.
  • В третьей фазе происходит расщепление хромосомы на две хроматиды. При этом нити веретена сокращаются и оттягивают дочерние хромосомы к противоположным полюсам.
  • В четвертой фазе митоза происходит диспирализация хромосом, а также формирование вокруг них ядерной оболочки. Одновременно происходит деление цитоплазмы. У дочерних клеток имеется диплоидный набор хромосом.

Редукционное деление свойственно исключительно половым клеткам. При таком типе клеточного размножения происходит формирование из хромосом парных образований. Исключение составляет одна непарная хромосома. В результате редукционного деления в двух дочерних клетках получается половинный хромосомный набор. Непарная находится лишь в одной дочерней клетке. Половые клетки, имеющие половинный набор хромосом, созревшие и способные к оплодотворению, называются женской и мужской гаметами.

Понятие цитоплазматической мембраны

У всех клеток животных, растений и даже у простейших бактерий есть особый поверхностный аппарат, который ограничивает и защищает матрикс от внешней среды. Цитоплазматическая мембрана (плазмалемма, клеточная мембрана, плазматическая мембрана) представляет собой избирательно проницаемый слой молекул (протеины, фосфолипиды), который охватывает цитоплазму. Он включает три подсистемы:

  • плазматическую мембрану;
  • надмембранный комплекс;
  • субмембранный опорно-сократительный аппарат гиалоплазмы.

Строение мембраны цитоплазмы таково: она содержит два слоя молекул липидов (бислой), при этом каждая такая молекула имеет хвост и головку. Хвосты обращены друг к другу. Они гидрофобны. Головки гидрофильны и обращены внутрь и наружу клетки. В бислой включены молекулы белка. Причем он асимметричен, а в монослоях располагаются разные липиды. Например, в эукариотической клетке молекулы холестерина находятся во внутренней, прилегающей к цитоплазме, половине мембраны. Гликолипиды располагаются исключительно в наружном слое, причем их углеводные цепи всегда направлены наружу. Цитоплазматическая мембрана выполняет важнейшие функции, в том числе ограничивает внутреннее содержимое клетки от внешней среды, позволяет проникать определенным веществам (глюкозе, аминокислотам) внутрь клетки. Плазмалемма осуществляет перенос веществ внутрь клетки, а также их вывод наружу, то есть выделение. Через поры проникают вода, ионы и мелкие молекулы веществ, а крупные твердые частицы транспортируются в клетку при помощи фагоцитоза. На поверхности мембрана образует микроворсинки, впячивания и выпячивания, что позволяет не только эффективно всасывать и выделять вещества, но и соединяться с другими клетками. Мембрана предоставляет возможность прикрепления «единицы всего живого» к различным поверхностям и способствует движению.

Органоиды в составе цитоплазмы. Эндоплазматическая сеть и рибосомы

Помимо гиалоплазмы, цитоплазма содержит в себе и множество микроскопических органоидов, которые различаются по строению. Их присутствие в растительных и животных клетках свидетельствует о том, что все они выполняют важнейшие функции и жизненно необходимы. В какой-то степени эти морфологические образования сравнимы с органами тела человека или животных, что и дало возможность называть их органоидами. В цитоплазме различают видимые в световой микроскоп органеллы -пластинчатый комплекс, митохондрии и центросому. При помощи электронного микроскопа в матриксе обнаруживаются микротрубочки, лизосомы, рибосомы и плазматическая сеть. Цитоплазма клеточная пронизана различными каналами, которые и получили название «эндполазматическая сеть». Их мембранные стенки контактируют со всеми другими органеллами и составляют единую систему, осуществляющую энергетический обмен, а также перемещение внутри клетки веществ. В стенках этих каналов находятся рибосомы, которые выглядят как мельчайшие гранулы. Они могут располагаться одиночно или группами. Рибосомы состоят из практически равного количества рибонуклеиновой кислоты и белков. Также в их состав включен магний. Рибосомы могут не только находиться в каналах ЭПС, но и свободно лежать в цитоплазме, а также встречаться в ядре, где они и образуются. Совокупность каналов, имеющих рибосомы, называются гранулярной эндоплазматической сетью. На них, кроме рибосом, располагаются ферменты, способствующие синтезу углеводов и жиров. Во внутренних полостях каналов находятся продукты жизнедеятельности клетки. Иногда в расширениях ЭПС формируются вакуоли - и ограниченные мембраной. Эти органоиды поддерживают тургорное давление. Лизосомы представляют собой мелкие образования овальной формы. Они рассеяны по цитоплазме. Формируются лизосомы в ЭПС или комплексе Гольджи, где наполняются гидролитическими ферментами. Лизосомы предназначены для переваривания частиц, попавших внутрь клетки вследствие фагоцитоза.

Цитоплазма: строение и функции ее органоидов. Пластинчатый комплекс Гольджи, митохондрии и центросома

Комплекс Гольджи представлен в растительных клетках отдельными тельцами, оформленными мембранами, а в животных - канальцами, пузырьками и цистернами. Этот органоид предназначен для химического изменения, уплотнения и последующего вывода в цитоплазму продуктов клеточной секреции. Также в нем осуществляется синтез полисахаридов и образование гликопротеидов. Митохондрии - это тельца палочковидной, нитевидной или зернистой формы. Они ограничиваются двумя мембранами, которые состоят из двойных слоев фосфолипидов и белков. От внутренних мембран этих органелл отходят кристы, на стенках которых находятся ферменты. С их помощью происходит синтез аденозинтрифосфорной кислоты (АТФ). Митохондрии иногда называют «клеточными электростанциями», так как они поставляют значительную часть аденозинового трифосфата. Он используется клеткой как источник химической энергии. Кроме того, митохондрии выполняют и другие функции, в том числе: передачу сигналов, некроз клеток, клеточное дифференцирование. Центросома (клеточный центр) состоит из двух центриолей, которые располагаются под углом друг к другу. Этот органоид имеется у всех животных и растений (кроме простейших и низших грибов) и отвечает за определение полюсов при митозе. В делящейся клетке сначала разделяется центросома. При этом образуется ахроматиновое веретено, которое задает ориентиры хромосомам, расходящимся к полюсам. Кроме обозначенных органоидов в клетке могут находиться и органеллы специального назначения, например, реснички и жгутики. Также на определенных этапах жизнедеятельности в ней могут иметься и включения, то есть временные элементы. Например, такие питательные вещества как: капельки жира, белки, крахмал, гликоген и т. д.

Лимфоциты - важнейшие клетки иммунной системы

Лимфоциты - это важные клетки, относящиеся к группе лейкоцитов крови человека и животных и участвующие в иммунологических реакциях. Они подразделяются по размеру и структурным особенностям на три подгруппы:

  • малые - диаметром менее 8 мкм;
  • средние - диаметром от 8 до 11 мкм;
  • большие - диаметром свыше 11 мкм.

Малые лимфоциты преобладают в крови животных. Они имеют крупное ядро округлой формы, преобладающее над объемом цитоплазмы. Цитоплазма лимфоцитов этой подгруппы выглядит как ядерный ободок или серп, прилежащий к какой-либо стороне ядра. Часто в матриксе содержится некоторое количество азурофильных гранул мелкого размера. Митохондрии, элементы пластинчатого комплекса и канальцы ЭПС немногочисленны и находятся около ядерного углубления. Средние и большие лимфоциты устроены несколько иначе. Их ядра имеют бобовидную форму, содержат меньшее количество хроматина конденсированного. В них легко различить ядрышко. Цитоплазма лимфоцитов второй и третьей групп имеет более широкий ободок. Известно два класса лимфоцитов, так называемые В- и T-лимфоциты. Первые образуются у животных в миеловидной ткани костного мозга. Эти клетки имеют способность образовывать иммуноглобулины. С их помощью В-лимфоциты взаимодействуют с антигенами, распознавая последних. Т-лимфоциты образуются из костномозговых клеток в тимусе (в его корковой части долек). В их цитоплазматической мембране находятся поверхностные антигены гистосовместимости, а также многочисленные рецепторы, при помощи которых осуществляется распознавание чужеродных частиц. Малые лимфоциты, в основном, представлены T-лимфоцитами (более 70%), среди которых имеется большое количество долгоживущих клеток. Подавляющее большинство B-лимфоцитов живут недолго - от одной недели до месяца.

Надеемся, наша статья оказалась полезной, и теперь вы знаете, что такое цитоплазма, гиалоплазма и плазмелемма. А также осведомлены, каковы функции, строение и значение для жизнедеятельности организма этих клеточных образований.

Цитоплазма - содержимое клетки за пределами ядра, заключенное в плазматическую мембрану. Она имеет прозрачный цвет и гелеподобную консистенцию. Цитоплазма состоит в основном из воды, а также содержит ферменты, соли, и различные органические молекулы.

Функция цитоплазмы

Цитоплазма функционирует для поддержки и суспендирования органелл и клеточных молекул. Многие клеточные процессы также происходят в цитоплазме.

Некоторые из этих процессов включают синтез белка, первую стадию , известную как гликолиз, и . Кроме того, цитоплазма помогает перемещать вещества, такие как гормоны, вокруг клетки, а также растворяет клеточные отходы.

Компоненты цитоплазмы

Органеллы

Органеллы - это крошечные клеточные структуры, которые выполняют определенные функции внутри клетки. Примеры органелл включают: , и .

Также внутри цитоплазмы находится , сеть волокон, которые помогают клетке поддерживать свою форму и обеспечивают поддержку органелл.

Цитоплазматические включения

Цитоплазматические включения представляют собой частицы, временно суспендированные в цитоплазме. Включения состоят из макромолекул и гранул.

Три типа включений, встречающихся в цитоплазме, представляют собой секреторные и питательные включения, а также пигментные гранулы. Примерами секреторных включений являются белки, ферменты и кислоты. Гликоген (хранилище молекул глюкозы) и липиды являются примерами питательных включений. Меланин, присутствующий в клетках кожи, является примером включения пигментных гранул.

Цитоплазматические отделы

Цитоплазму можно разделить на две основные части: эндоплазму и эктоплазму. Эндоплазма представляет собой центральную область цитоплазмы, которая содержит органеллы. Эктоплазма представляет собой более гелеподобную периферическую часть цитоплазмы клетки.

Клеточная мембрана

Клеточная или плазматическая мембрана - это структура, предотвращающая пролитие цитоплазмы из клетки. Эта мембрана состоит из фосфолипидов, образующих липидный бислой, который отделяет содержимое клетки от внеклеточной жидкости. Липидный бислой является полупроницаемым, а это означает, что только некоторые молекулы способны диффундировать через мембрану для входа или выхода из клетки. Внеклеточная жидкость, белки, липиды и другие молекулы могут быть добавлены в цитоплазму клетки при помощи . В этом процессе молекулы и внеклеточная жидкость интернализуются, когда мембрана образует везикулу.

Везикула отделяет жидкость, молекулы и почки от клеточной мембраны, образуя эндосому. Эндосома перемещается внутри клетки, чтобы доставить ее содержимое в соответствующие пункты назначения. Вещества удаляются из цитоплазмы путем . В этом процессе везикулы, почкованные из тел Гольджи, сливаются с клеточной мембраной, вытесняя их содержимое из клетки. Плазматическая мембрана также обеспечивает структурную поддержку клетки, выступая в качестве стабильной платформы для прикрепления цитоскелета и .

Сегодня вы сможете узнать, что такое цитоплазма в биологии. Помимо этого, предлагаем обратить внимание на множество интересных вопросов:

  1. Организация клетки.
  2. Гиалоплазма.
  3. Свойства и функции цитоплазмы.
  4. Органоиды и так далее.

Для начала предлагаем ввести для неизвестного термина определение. Цитоплазма - это та часть клетки, которая находится за пределами ядра и ограничивается мембраной. Все содержимое клетки, включая ядро - это протоплазма.

Важно обратить внимание на то, что именно здесь происходят важные метаболические процессы. В цитоплазме происходит:

  • поглощение ионов и других метаболитов;
  • транспортировка;
  • образование энергии;
  • синтез белковых и небелковых продуктов;
  • клеточное пищеварение и так далее.

Все вышеперечисленные процессы поддерживают жизнеспособность клетки.

Типы структурной организации клетки

Ни для кого не секрет, что все ткани и органы образованы из мельчайших частиц - клеток.

Ученые смогли выделить всего два их вида:

  • прокариотические;
  • эукариотические.

Самые простые формы жизни содержат одну-единственную клетку и размножаются при помощи ее деления. Приведенные две формы клеток имеют некоторые отличия и сходства. В прокариотических клетках отсутствует ядро, а хромосома находится непосредственно в цитоплазме (что такое цитоплазма в биологии было сказано ранее). Это строение присутствует у бактерий. Другое дело - эукариотическая клетка. О ней мы поговорим в следующем разделе.

Эукариотическая клетка

Данный вид имеет более сложное строение. ДНК связана с белком и находится в хромосомах, которые, в свою очередь, располагаются в ядре. Этот органоид отделен при помощи мембраны. Несмотря на большое количество отличий, у клеток есть нечто общее - внутреннее содержимое наполнено коллоидным раствором.

Цитоплазма клетки (или коллоидный раствор) является важной составляющей. Она имеет полужидкое состояние. Там же мы можем обнаружить:

  • канальцы;
  • микротрубочки;
  • микрофиламенты;
  • филаменты.

Цитоплазма - это коллоидный раствор, в котором происходит движение коллоидных частиц и других компонентов. Сам раствор состоит из воды и других соединений (как органических, так и неорганических). Именно в цитоплазме располагаются органоиды и временные включения.

Различия между цитоплазмой растительной и животной клетки

Определение цитоплазмы мы уже ввели, теперь выявим отличия коллоидного раствора у животных и растительных клеток.

  1. Цитоплазма растительной клетки. В ее составе мы можем обнаружить пластиды, которых всего насчитывается три вида: хлоропласты, хромопласты и лейкопласты.
  2. Цитоплазма животной клетки. В данном случае мы можем наблюдать два слоя цитоплазмы - эктоплазму и эндоплазму. Наружный слой (эктоплазма) содержит огромное количество микрофиламента, а внутренний слой - органоиды и гранулы. При этом эндоплазма менее вязкая.

Гиалоплазма

Основа цитоплазмы клетки - гиалоплазма. Что это такое? Гиалоплазма - это раствор, который неоднородный по своему составу, слизистый и бесцветный. Именно в данной среде протекает обмен веществ. Часто применяется относительно гиалоплазмы термин "матрикс".

В состав входят:

  • белки;
  • липиды;
  • полисахариды;
  • нуклеотиды;
  • аминокислоты;
  • ионы неорганических соединений.

Гиалоплазма представлена двумя формами:

  • гель;
  • золь.

Между двумя данными фазами есть взаимопереходы.

Вещества коллоидного раствора клетки

Что такое цитоплазма в биологии, мы уже пояснили, теперь предлагаем переходить к рассмотрению химического состава коллоидного раствора. Все вещества, которые входят в состав клетки, можно разделить на две обширные группы:

  • органические;
  • неорганические.

В первой группе находятся:

  • белки;
  • углеводы (моносахариды, дисахариды и полисахариды);
  • жиры;
  • нуклеиновые кислоты.

Немного подробнее об углеводах. Моносахариды - фруктоза, глюкоза, рибоза и другие. Крупные полисахариды состоят из моносахаридов - крахмала, гликогена и целлюлозы.

  • вода (девяносто процентов);
  • кислород;
  • водород;
  • углерод;
  • азот;
  • натрий;
  • кальций;
  • сера;
  • хлор и так далее.

Свойства цитоплазмы

Говоря о том, что такое цитоплазма в биологии, нельзя обойти стороной вопрос о свойствах коллоидного раствора.

Первая и очень важная особенность - циклоз. Другими словами, это движение, которое происходит внутри клетки. Если данное движение останавливается, то клетка сразу же погибает. Скорость циклоза напрямую зависит от некоторых факторов, таких как:

  • свет;
  • температура и так далее.

Второе свойство - вязкость. Данный показатель изменяется в зависимости от организма. Вязкость цитоплазмы напрямую зависит от обмена веществ.

Третья особенность - полупроницаемость. Наличие пограничных мембран в цитоплазме позволяет некоторые молекулы пропускать, а другие задерживать. Эта избирательная проницаемость играет важную роль в жизнедеятельности клетки.

Органоиды цитоплазмы

Все органоиды, входящие в состав клетки, можно разделить на две группы.

  1. Мембранные. Это замкнутые полости (вакуоль, мешочек, цистерна). Данное название они получили, потому что содержимое органоида отделено от цитоплазмы при помощи мембраны. При этом все мембранные органоиды можно разделить еще на две группы: одномембранные и двумембранные. К первым относят эндоплазматический ретикулум, комплекс Гольджи, лизосомы, пероксисомы. Важно заметить, что все одномембранные органоиды взаимосвязаны между собой и создают единую систему. К двумембранным органоидам относят митохондрии и пластиды. Они имеют сложную структуру, а от цитоплазмы их отделяют целых две мембраны.
  2. Немембранные. Сюда относятся фибриллярные структуры и рибосомы. К первым относят микрофиламенты, микрофибриллы и микротрубочки.

Помимо органоидов, в состав цитоплазмы входят включения.

Функции цитоплазмы

К функциям цитоплазмы относятся:

  • заполнение области клетки;
  • связывание клеточных компонентов;
  • объединение компонентов клетки в единое целое;
  • определение положения органелл;
  • проводник для химических и физических процессов;
  • поддержание внутреннего давления в клетке, объема, упругости.

Как видите, значение цитоплазмы очень велико для всех клеток, как эукариотических, так и прокариотических.

Цитоплазма - обязательная часть клетки, заключенная между плазматической мембраной и ядром и представляющая собой гиалоплазму - основное вещество цитоплазмы, органоиды - постоянные компоненты цитоплазмы и включения - временные компоненты цитоплазмы. Химический состав цитоплазмы разнообразен. Ее основу составляет вода (60-90% всей массы цитоплазмы). Цитоплазма богата белками, в состав ее могут входить жиры и жироподобные вещества, различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Одна из характерных особенностей цитоплазмы - постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органелл клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Основное вещество цитоплазмы - гиалоплазма (цитозоль) - представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь - более жидкая гиалоплазма и гель - более густая гиалоплазма. Между ними возможны взаимопереходы: гель легко превращается в золь и наоборот.

Клеточные оболочки эукариотических организмов имеют различное строение, но всегда к цитоплазме прилегает плазматическая мембрана, на ее поверхности образуется наружный слой. У животных он называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), у растений - клеточной стенкой из мощного слоя волокон клетчатки.

Строение мембран . Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны (модель «сэндвича»). Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. В бислое хвосты молекул в мембране обращены друг.к другу, а полярные головки - наружу, к воде. Помимо липидов в состав мембраны входят белки (в среднем 60%). Они определяют большинство специфических функций мембраны. Молекулы белков не образуют сплошного слоя, различают периферические белки - белки, располагающиеся на наружной или внутренней поверхности липидного бислоя, полуинтегральные белки - белки, погруженные в липидный бислой на различную глубину, интегральные, или трансмембранные белки - белки, пронизывающие мембрану насквозь, контактируя при этом с наружной, и с внутренней средой клетки.



Мембранные белки могут выполнять различные функции: транспорт определенных молекул, катализ реакций, происходящих на мембранах, поддержание структуры мембран, получение и преобразование сигналов из окружающей среды.

В состав мембраны может входить от 2 до 10% углеводов. Углеводный компонент мембран обычно представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс - гликокаликс, имеющий толщину в несколько десятков нанометров. В нем происходит внеклеточное пищеварение, располагаются многие рецепторы клетки, с его помощью, по-видимому, происходит адгезия клеток.

Молекулы белков и липидов подвижны, способны перемещаться, главным образом, в плоскости мембраны. Толщина плазматической мембраны в среднем 7,5 нм.

Функции мембран .

1. Они отделяют клеточное содержимое от внешней среды.

2. Регулируют обмен веществ между клеткой и средой.

3. Делят клетки на компартаменты, предназначенные для протекания различных реакций.

4. Многие химические реакции протекают на ферментативных конвейерах, располагающихся на самих мембранах.

5. Обеспечивают связь между клетками в тканях многоклеточных организмов.

6. На мембранах располагаются рецепторные участки для распознавания внешних стимулов.

Одна из основных функций мембраны - транспортная, обеспечивающая обмен веществ между клеткой и внешней средой. Мембраны обладают свойством избирательной проницаемости , то есть хорошо проницаемы для одних вещества или молекул и плохо проницаемы (или совсем непроницаемы) для других. Существуют различные механизмы транспорта веществ через мембрану. В зависимости от необходимости использования энергии для осуществления транспорта веществ различают: пассивный транспорт - транспорт веществ, идущий без затрат энергии; активный транспорт - транспорт, идущий с затратами энергии.



В основе пассивного транспорта лежит разность концентраций и зарядов. При пассивном транспорте вещества всегда перемещаются из области с более высокой концентрацией в область с более низкой, то есть по градиенту концентрации.

Различают три основных механизма пассивного транспорта :простая диффузия - транспорт веществ непосредственно через липидный бислой. Через него легко проходят газы, неполярные или малые незаряженные полярные молекулы. Чем меньше молекула и чем более она жирорастворима, тем быстрее она проникает через мембрану. Интересно, что полярные молекулы воды очень быстро проникают через липидный бислой. Это объясняется тем, что ее молекулы малы и электрически нейтральны. Диффузию воды через мембраны называют осмосом.

Диффузия через мембранные каналы. Заряженные молекулы и ионы (Na + , К + , Са 2+ , С1~) не способны проходить через липидный бислой путем простой диффузии, тем не менее, они проникают через мембрану, благодаря наличию в ней особых каналообразующих белков, формирующих поры. Большая часть воды проходит мембрану через каналы, образованные белками-аквапоринами.

Облегченная диффузия - транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за транспорт определенных молекул или групп родственных молекул. Они взаимодействуют с молекулой переносимого вещества и каким-либо способом перемещают ее сквозь мембрану. Так в клетку транспортируются сахара, аминокислоты, нуклеотиды и многие другие полярные молекулы.

Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. Одной из наиболее изученных систем активного транспорта является натрий-калиевый насос. Концентрация К + внутри клетки значительно выше, чем за ее пределами, a Na + - наоборот. Поэтому К + через водяные поры мембраны пассивно диффундирует из клетки, a Na + - в клетку. Вместе с тем для нормального функционирования клетке важно поддерживать определенное соотношение ионов К + и Na + в цитоплазме и во внешней среде. Это оказывается возможным потому, что мембрана, благодаря наличию натрий-калиевого насоса, активно перекачивает Na + из клетки, а К + в клетку. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3 иона Na + и закачивает 2 иона К + . К + быстрее пассивно диффундирует из клетки, чем Na + в клетку.

Клетка имеет механизмы, благодаря которым может осуществлять транспорт через мембрану крупных частиц и макромолекул. Процесс поглощения макромолекул клеткой называется эндоцитозом . При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной, являющейся частью наружной цитоплазматической мембраны. Различают два типа эндоцитоза: фагоцитоз - захват и поглощение крупных частиц (например, фагоцитоз лимфоцитов, простейших и др.) и пиноцитоз - процесс захвата и поглощения капелек жидкости с растворенными в ней веществами.

Экзоцитоз - процесс выведения различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны.

Органоиды клетки

Органоиды (органеллы) - постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. Каждый органоид имеет определенное строение и выполняет определенные функции.

Различают: мембранные органоиды - имеющие мембранное строение, причем они могут быть одномембранными (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли растительных клеток) и двумембранными (митохондрии, пластиды, ядро).

Кроме мембранных могут быть и немембранные органоиды - не имеющие мембранного строения (хромосомы, рибосомы, клеточный центр и центриоли, реснички и жгутики с базальными тельцами, микротрубочки, микрофиламенты).

Одномембранные органоиды:

1. Эндоплазматический ретикулум (ЭПР). Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полости ЭПР. Мембраны с одной стороны связаны с наружной цитоплазматической мембраной, с другой - с наружной оболочкой ядерной мембраны. Различают два вида ЭПР: шероховатый (гранулярный), содержащий на своей поверхности рибосомы и представляющий собой совокупность уплощенных мешочков, и гладкий (агранулярный), мембраны которого рибосом не несут.

Функции: разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым пространственное отграничение друг от друга множества параллельно идущих различных реакций, Осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза.

2. Аппарат Гольджи. Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, с которой связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен.

Важнейшая функция комплекса Гольджи - выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. Здесь происходит синтез сложных углеводов из простых сахаров, созревание белков, образование лизосом.

3. Лизосомы. Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диаметром 0,2-0,8 мкм, содержащие до 60 гидролитических ферментов, активных в слабокислой среде.

Образование лизосом происходит в аппарате Гольджи, куда из ЭПР поступают синтезированные в нем ферменты. Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида.

Различают: первичные лизосомы - лизосомы, отшнуровавшиеся от аппарата Гольджи и содержащие ферменты в неактивной форме, и вторичные лизосомы - лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис, поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями).

Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки (например, замена хрящевой ткани костной, исчезновение хвоста у головастика лягушек).

4. Реснички и жгутики. Образованы девятью сдвоенными микротрубочками, образующими стенку цилиндра, покрытого мембраной; в его центре находятся две одиночные микротрубочки. Такая структура типа 9+2 характерна для ресничек и жгутиков почти всех эукариотических организмов, от простейших до человека.

Реснички и жгутики укреплены в цитоплазме базальными тельцами, лежащими в основании этих органоидов. Каждое базальное тельце состоит из девяти троек микротрубочек, в его центре микротрубочек нет.

5. К одномембранным органоидам относятся также и вакуоли , окруженные мембраной - тонопластом. В растительных клетках могут занимают до 90% объема клетки и обеспечивают поступление воды в клетку за счет высокого осмотического потенциала и тургор (внутриклеточное давление). В животных клетках вакуоли небольшие, образуются за счет эндоцитоза (фагоцитозные и пиноцитозные), после слияния с первичными лизосомами называются пищеварительными вакуолями.

Двумембранные органоиды:

1. Митохондрии . Двумембранные органоиды эукариотической клетки, обеспечивающие организм энергией. Количество митохондрий в клетке колеблется в широких пределах, от 1 до 100 тыс., и зависит от ее метаболической активности. Число митохондрий может увеличиваться путем деления, так как эти органоиды имеют собственную ДНК.

Наружная мембрана митохондрий гладкая, внутренняя мембрана образует многочисленные впячивания или трубчатые выросты - кристы . Число крист может колебаться от нескольких десятков до нескольких сотен и даже тысяч, в зависимости от функций клетки. Они увеличивают поверхность внутренней мембраны, на которой размещаются ферментные системы, участвующие в синтез молекул АТФ.

Внутреннее пространство митохондрий заполнено матриксом . Вматриксе содержатся кольцевая молекула митохондриальной ДНК специфические иРНК, тРНК и рибосомы (прокариотического типа) осуществляющие автономный биосинтез части белков, входящих состав внутренней мембраны. Эти факты свидетельствуют в пользу происхождения митохондрий от бактерий-окислителей (согласно гипотезе симбиогенеза). Но большая часть генов митохондрии перешла в ядро, и синтез многих митохондриальных белков происходит в цитоплазме. Кроме того, содержатся ферменты, образующие молекулы АТФ. Митохондрии способны размножаться путем деления.

Функции митохондрий - кислородное расщепление углеводов аминокислот, глицерина и жирных кислот с образованием АТФ, синтез митохондриальных белков.

2. Пластиды . Различают три основных типа пластид: лейкопласты - бесцветные пластиды в клетках неокрашенных частей растений, хромопласты - окрашенные пластиды, обычно желтого, красного и оранжевого цвета, хлоропласты - зеленые пластиды. Пластиды образуются из пропластид - двумембранных пузырьков размером до 1 мкм.

Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Наиболее часто происходит пpeвращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету), обратный процесс происходит в темноте. При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.

Хлоропласты. Основная функция - фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений по форме напоминают двояковыпуклую линзу. Наружная мембрана гладкая, а внутренняя имеет складчатую структуру. В результат образования выпячиваний внутренней мембраны возникает система ламелл и тилакоидов. Внутренняя среда хлоропластов - строма содержит кольцевую ДНК и рибосомы прокариотического типа. Пластиды способны к автономному делению, как и митохондрии. Факты, согласно гипотезе симбиогенеза, также свидетельствуют в пользу происхождения пластид от цианобактерий.


Рис. Современная (обобщённая) схема строения растительной клетки , составленная по данным электронно-микроскопического исследования разных растительных клеток: 1 - аппарат Гольджи; 2 - свободно расположенные рибосомы; 3 - хлоропласты; 4 - межклеточные пространства; 5 - полирибосомы (несколько связанных между собой рибосом); 6 - митохондрии; 7 - лизосомы; 8 - гранулированная эндоплазматическая сеть; 9 - гладкая эндоплазматическая сеть; 10 - микротрубочки; 11 - пластиды; 12 - плазмодесмы, проходящие сквозь оболочку; 13 - клеточная оболочка; 14 - ядрышко; 15, 18 - ядерная оболочка; 16 - поры в ядерной оболочке; 17 - плазмалемма; 19 - гиалоплазма; 20 - тонопласт; 21 - вакуоли; 22 - ядро.

Рис. Строение мембраны

Рис. Строение митохондрии . Вверху и в середине - вид продольного среза через митохондрию (вверху - митохондрия из эмбриональной клетки кончика корня; в середине - из клетки взрослого листа элодеи). Внизу - трехмерная схема, на которой часть митохондрии срезана, что позволяет видеть ее внутреннее строение. 1 - наружная мембрана; 2 - внутренняя мембрана; 3 - кристы; 4 - матрикс.



Рис. Строение хлоропласта . Слева - продольный разрез через хлоропласт: 1 - граны, образованные ламеллами, сложенными стопками; 2 - оболочка; 3 - строма (матрикс); 4 - ламеллы; 5 - капли жира, образовавшегося в хлоропласте. Справа - трехмерная схема расположения и взаимосвязи ламелл и гран внутри хлоропласта: 1 - граны; 2 - ламеллы.

Цели урока:

  • Углубить общие представления о строении эукариотической клетки.
  • Сформулировать знания о свойствах и функциях цитоплазмы.
  • На практической работе убедиться, что цитоплазма живой клетки эластична и полупроницаема.

Ход урока

  • Записываем тему урока.
  • Повторяем пройденный материал, работаем с тестами.
  • Читаем и комментируем вопросы тестов. (См. Приложение 1 ).
  • Записываем домашнее задание: п.5.2., записи в тетрадях.
  • Изучение нового материала.

Это основное вещество цитоплазмы.

Это сложная коллоидная система.

Состоит из воды, белков, углеводов, нуклеиновых кислот, липидов, неорганических веществ.

Имеется цитоскелет.

Цитоплазма всё время перемещается.

Функции цитоплазмы.

  • Внутренняя среда клетки.
  • Объединяет все клеточные структуры.
  • Определяет местоположение органоидов.
  • Обеспечивает внутриклеточный транспорт.

Свойства цитоплазмы:

  • Эластичность.
  • Полупроницаемость.

Благодаря этим свойствам клетка переносит временное обезвоживание и поддерживает постоянство своего состава.

Необходимо вспомнить такие понятия как тургор, осмос, диффузия .

Для того чтобы ознакомиться со свойствами цитоплазмы, учащимся предлагается выполнить практическую работу: "Изучение плазмолиза и деплазмолиза в растительной клетке. (См. Приложение 2).

В процессе работы необходимо нарисовать клетку кожицы лука (Пункт 1. Клетку в пункте 2 и 3).

Сделать вывод о происходящих в клетке процессах (устно)

Ребята пытаются объяснить, что в пункте 2 наблюдается плазмолиз- отделение пристеночного слоя цитоплазмы, в пункте 3 наблюдается деплазмолиз - возврат цитоплазмы к нормальному состоянию.

Необходимо объяснить причины этих явлений. Чтобы снять затруднения перед уроками даю трём ученикам учебные пособия: "Биологический энциклопедический словарь", 2 том биологии Н.Грин, " Эксперимент по физиологии растений" Е.М.Васильева, где они самостоятельно находят материал о причинах плазмолиза и деплазмолиза.

Выясняется, что цитоплазма эластична и полупроницаема. Если бы она была проницаемой, то происходило бы выравнивание концентраций клеточного сока и гипертонического раствора путём диффузного перемещения воды и растворённых веществ из клетки в раствор и обратно. Однако цитоплазма, обладая свойством полупроницаемости, не пропускает внутрь клетки растворённые в воде вещества.

Напротив, только вода, согласно законам осмоса, будет высасываться гипертоническим раствором из клетки, т.е. передвигаться через полупроницаемую цитоплазму. Объём вакуоли уменьшится. Цитоплазма в силу эластичности следует за сокращающейся вакуолью и отстаёт от оболочки клетки. Так происходит плазмолиз.

При погружении плазмолизированной клетки в воду наблюдается деплазмолиз.

Обобщение знаний, полученных на уроке.

  1. Какие функции присущи цитоплазме?
  2. Свойства цитоплазмы.
  3. Значение плазмолиза и деплазмолиза.
  4. Цитоплазма - это
    а) водный раствор солей и органических веществ вместе с органоидами клетки, но без ядра;
    б) раствор органических веществ, включающий ядро клетки;
    в) водный раствор минеральных веществ, включающий все органоиды клетки с ядром.
  5. Как называется основное вещество цитоплазмы?

Во время практической работы учитель проверяет правильность её выполнения. У кого всё получилось, можно поставить оценки. Оценки выставляются за правильные выводы.